Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency.

نویسندگان

  • G Zhu
  • R J Spreitzer
چکیده

The structure of active-site loop 6 plays a role in determining the CO2/O2 specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39). Rubisco from the green alga Chlamydomonas reinhardtii differs from higher plant Rubisco within the loop 6 region, and the C. reinhardtii enzyme has a CO2/O2 specificity 25% lower than that of higher plant enzymes. To examine whether differences in sequence may account for differences in catalytic efficiency, we focused on a conserved pair of residues that are in van der Waals contact at the base of loop 6. C. reinhardtii Rubisco contains Leu-326 and Met-349, whereas higher plant enzymes contain Ile-326 and Leu-349. By employing in vitro mutagenesis and chloroplast transformation, L326I and M349L substitutions were created within the Rubisco large subunit of C. reinhardtii. M349L had little effect, but L326I destabilized the holoenzyme in vivo and in vitro. When present together, the M349L substitution partially alleviated the instability resulting from the L326I substitution, but caused a 21% decrease in CO2/O2 specificity and a 74% decrease in the Vmax of carboxylation. Interactions between loop 6 and other structural regions are likely to be responsible for both holoenzyme stability and catalytic efficiency in higher plant Rubisco enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of structural and functional divergence far from the large subunit active site of ribulose-1,5-bisphosphate carboxylase/oxygenase.

Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to a...

متن کامل

RbcS suppressor mutations improve the thermal stability and CO2/O2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylase/oxygenase.

In the green alga Chlamydomonas reinhardtii, a Leu(290)-to-Phe (L290F) substitution in the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco), which is coded by the chloroplast rbcL gene, was previously found to be suppressed by second-site Ala(222)-to-Thr and Val(262)-to-Leu substitutions. These substitutions complement the photosynthesis deficiency of the L290F mutant...

متن کامل

RbcS suppressor mutations improve the thermal stability and CO2yO2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylaseyoxygenase

In the green alga Chlamydomonas reinhardtii, a Leu290-to-Phe (L290F) substitution in the large subunit of ribulose-1,5-bisphosphate carboxylaseyoxygenase (Rubisco), which is coded by the chloroplast rbcL gene, was previously found to be suppressed by second-site Ala222-to-Thr and Val262-to-Leu substitutions. These substitutions complement the photosynthesis deficiency of the L290F mutant by res...

متن کامل

Ribulose 1,5-bisphosphate carboxylase. Effect on the catalytic properties of changing methionine-330 to leucine in the Rhodospirillum rubrum enzyme.

Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from...

متن کامل

Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas.

The Chlamydomonas reinhardtii chloroplast mutant 68-4PP is phenotypically indistinguishable from wild type at 25 degrees C but fails to grow photosynthetically at 35 degrees C. It had about 30% of the wild-type level of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) holoenzyme and carboxylase activity when grown at 25 degrees C, but less than 15% when grown at 35 degrees C. Pulse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 31  شماره 

صفحات  -

تاریخ انتشار 1996